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Abstract. Estimating the likelihood of compound climate extremes such as concurrent drought and heatwaves or compound

precipitation and wind speed extremes is important for assessing climate risks. Typically, simulations from climate models are

used to assess future risks, but it is largely unknown how well the current generation of models represents compound extremes.

Here, we introduce a new metric that measures whether the tails of bivariate distributions show a similar dependence structure

across different datasets. We analyse compound precipitation and wind extremes in reanalysis data and different high-resolution5

simulations for central Europe. A state-of-the-art reanalysis dataset (ERA5) is compared to simulations with a weather model

(WRF) either driven by observation-based boundary conditions or a global circulation model (CESM) under present-day and

future conditions with strong greenhouse gas forcing (RCP8.5). Over the historical period, the high-resolution WRF simulations

capture precipitation and wind extremes and there response to orographic effects more realistically than ERA5. Thus, WRF

simulations driven by observation-based boundary conditions are used as a benchmark for evaluating the dependence structure10

of wind and precipitation extremes. Overall, boundary conditions in WRF appear to be the key factor in explaining differences

in the dependence behaviour between strong wind and heavy rainfall between simulations. In comparison, external forcings

(RCP8.5) are of second order. Our approach offers new methodological tools to evaluate climate model simulations with respect

to compound extremes.

1 Introduction

Compound extremes such as co-occurring drought and heat or compound precipitation and wind extremes can have substantial

impact on the natural environment and human systems that often exceeds impact caused by a single extreme (Zscheischler

et al., 2014; Raveh-Rubin and Wernli, 2015; Martius et al., 2016; Sippel et al., 2018). Over the recent years a number of
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compound extremes have been investigated. For instance, several studies have analysed the dependence between storm surge20

and heavy precipitation (Wahl et al., 2015; Zheng et al., 2013; Bevacqua et al., 2019) or extreme runoff (Ward et al., 2018;

Hendry et al., 2019) to estimate the risk of compound flooding in coastal areas. Compound droughts and heatwaves have been

studied for different regions and varying temporal scales (Mazdiyasni and AghaKouchak, 2015; Zscheischler and Seneviratne,

2017; Manning et al., 2019; Sutanto et al., 2020; Zscheischler and Fischer, in review). The occurrence rate of compound

precipitation and wind extremes has been estimated for the Mediterranean region (Raveh-Rubin and Wernli, 2015), Europe25

(De Luca et al., 2020) and at the global scale (Martius et al., 2016). Other studies have investigated the co-occurrence of hot

days and hot nights (Wang et al., 2020) or the co-occurrence rate of heavy precipitation and snow melt to estimate the risk of

rain-on-snow events (Musselman et al., 2018; Poschlod et al., 2020). Such a quantification of the occurrence rate of compound

extremes is important for assessing the risk of associated impacts today and in the future. Most of the above studies studies

identify compound extremes by thresholding the contributing variables to quantify the occurrence of compound extremes and30

changes associated with climate change. However, the dependence structure in the tails only is rarely investigated. Due to the

rarity of compound extremes, a large number of samples is required to obtain robust estimates, making it difficult to rely solely

on observational data.

Large ensemble simulations (Deser et al., 2020) offer an opportunity to estimate future changes in the occurrence of com-

pound events without running into data limitations (Poschlod et al., 2020; Champagne et al., 2020). However, such projections35

need to be interpreted with care as it is often largely unknown how well the employed models represent observed compound

events (Musselman et al., 2018), and differences might be large between models. Climate models are regularly evaluated based

on their ability to represent well-known processes in the climate system as well as predominantly univariate comparisons with

key climate variables (Flato et al., 2013) though some multivariate metrics have been explored (Sippel et al., 2017). Yet lit-

tle is known about the ability of climate models to capture observed occurrence rates of compound extremes (Zscheischler40

et al., 2018), a challenging task primarily for two reasons. First, due to their rarity, a robust quantification of the likelihood of

compound extremes requires large amounts of data, thus making it difficult to establish “ground truth” for many applications.

Second, suitable metrics for evaluating multivariate extremes have not been widely tested and applied in a climate context.

Such metrics, however, are essential to assess how well models represent compound events, in particular to assess future risks

(Zscheischler et al., 2020). When observational data are scarce, process-based model simulations (Couasnon et al., 2020) and45

reanalysis data (Martius et al., 2016) can be employed to extend or replace purely observational datasets.

To date, model-data comparisons related to compound extremes have been conducted to a very limited extent, often re-

lying on simplifying assumptions and typically confined to precipitation and temperature. For instance, a high likelihood of

compound hot and dry summers has been linked to a strongly negative correlation between summer temperature and precipita-

tion (Zscheischler and Seneviratne, 2017). While there is generally a good agreement with respect to this correlation between50

climate models and observation-based datasets in the northern hemisphere, there is strong disagreement in the southern hemi-

sphere, for which the models show a much stronger dependence. This finding may suggest that climate models overestimate

dependence between summer temperature and precipitation. However, this discrepancy may also be related to the way gridded

observation-based datasets are assembled. In particular, for locations without an active measurement station nearby, the mean
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seasonal cycle is often used to fill gaps in the observational networks (e.g. Mitchell and Jones, 2005). This approach reduces the55

strength of co-variability between temperature and precipitation in poorly sampled regions, which are mostly in the southern

hemisphere. Thus, assessing the ability of climate models to represent compound events may reveal underappreciated limita-

tions in gridded observation-based datasets. We are not aware of studies so far that have evaluated the dependence between

precipitation and wind speed.

In this study we focus on compound precipitation and wind extremes, which can have severe socio-economic impacts in-60

cluding human fatalities, impaired critical infrastructure and economical damage (Fink et al., 2009; Lin et al., 2010; Liberato,

2014; Raveh-Rubin and Wernli, 2015; Martius et al., 2016). We investigate differences in the occurrence of compound precip-

itation and wind extremes for different datasets over a region in central Europe around the Alps. To this end, we introduce a

new measure that assesses dissimilarity between the tails of bivariate distributions. We study an experimental design with two

factors. The first factor is the type of boundary conditions in a high-resolution regional weather model, either from reanalysis65

or a global circulation model. The second one corresponds to the effect of different climate forcing, between today and the

future under a high-emission scenario. Our object of study under this design is the dependence between heavy rainfall and

strong wind in winter over central Europe. In addition, comparisons with a state-of-the-art reanalysis product are implemented.

2 Data

We use daily precipitation sums and daily maximum wind speed in the extended winter (November-March) from one reanalysis70

product and three model simulations over a period of 20 years. The employed reanalysis product is the ERA5 data (Copernicus

Climate Change Service (C3S), 2017) where we use the period 1980 to 1999 CE. This reanalysis is generated with an updated

numerical weather prediction model and data assimilation system compared to the prior product ERA Interim (Dee et al., 2011)

and integrates additional data sources. The data is available at resolution of roughly 30 km (spectral resolution of T639), 137

vertical levels and hourly output.75

The three simulations are performed with the Weather Research and Forecasting (WRF) model (Skamarock et al., 2008)

which is forced with boundary conditions from (i) ERA Interim (Dee et al., 2011) (ERAI-WRF), (ii) a period of free-running

global climate simulation for present day (CESM-WRF) and (iii) a period covering the end of the 21st century under the Repre-

sentative Concentration Pathway 8.5 (CESM-WRF-fut, a high-emission scenario). The global climate simulation is performed

with the Community Earth System Model CESM (Hurrell et al., 2013) for the period 850 to 2100 CE. Details on the setting80

are described in Lehner et al. (2015) and Raible et al. (2018). In this study we use the periods 1980 to 1999 CE as present day

and 2080 to 2099 CE as future.

The periods of the global simulations and the ERA Interim period (1980 to 1999 CE) are dynamically downscaled with WRF

in version 3.5. WRF is vertically discretised in 40 terrain-following eta-coordinate levels. The horizontal resolution of the four

two-way nested domains are 54, 18, 6 and 2 km, respectively. The innermost domain covers the box [4.75◦E,15.25◦E]×85

[43.25◦N,48.75◦N] and is used in this study exclusively. The setup is described in more detail in Gómez-Navarro et al. (2015,

2018) and Messmer et al. (2017, 2020). Important for this a study is that the convection parameterisation is disabled for the
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simulations at 6 km and 2 km resolution; at these scales the model is convection-permitting. This is an important step in im-

proving the simulation of precipitation, though still some problems remain (Ban et al., 2014). For simulating wind adequately,

the setting of the planetary boundary layer parameterisation is key. We use a modified version of the fully non-local scheme90

developed by Hong and Lim (2020), which specifically treats effects of the unresolved orography (Jimenez and Dudhia, 2012).

For the ERAI-WRF simulation we allow analysis nudging of wind, temperature and humidity above the planetary boundary

layer, in order to stay close to large-scale behavior of the reanalysis data (Gómez-Navarro et al., 2015). For the two simulations

driven by CESM, nudging is omitted to allow the regional model to correct potential systematic biases of the CESM (e.g., a

too strong zonal atmospheric circulation in the mid latitudes (Bracegirdle et al., 2013)). The WRF output is provided in hourly95

resolution.

We remap the original hourly data to a common regular spaced grid with 0.25◦ spatial resolution using conservative remap-

ping and subsequently compute daily precipitation sums and daily wind speed maxima. The 0.25◦ spatial resolution was chosen

as it is closest to the original resolution of the ERA5 reanalysis data. Note however, that all WRF simulations are run on a much

higher convection-resolving resolution. The explicit resolution of convection and a much higher resolution of the topography100

may result in a more accurate representation of the dependence between precipitation and wind extremes in the simulations than

in ERA5. We further note that mean wind speed in ERA5 generally decreases with elevation (Fig. 1a), which is the opposite

behaviour of what is the expected behaviour of the response of wind speed to elevation from observations (Graf et al., 2019;

Telesca et al., 2020) and what is modelled by WRF (Fig. 1b). The discrepancy in mountainous regions between reanalysis

data and observations with respect to wind speed is also evident in other reanalysis datasets such as ERA Interim (Jones et al.,105

2017), which is the predecessor of ERA5. In contrast, WRF has been shown to simulate wind speed reasonable well also in

mountainous terrain (Stucki et al., 2016). For these reasons — WRF better resolves cloud processes, the topography and wind

speed, ERA5 misrepresents wind speed gradient with elevation — we use ERAI-WRF as the reference for all analyses.

3 A measure for evaluating compound extremes

3.1 Measuring tail dependence110

We quickly review the concept of bivariate asymptotic tail dependence and independence (Ledford and Tawn, 1997; Poon et al.,

2003). Two variables X1 and X2 with cumulative distribution functions F1 and F2, respectively, are asymptotically dependent

if

χ= lim
q→1

P(F1(X1)> q | F2(X2)> q) ∈ (0,1],

and asymptotically independent otherwise (i.e., if χ= 0). The coefficient χ is called extremal correlation and represents, after115

transformingX1 andX2 to the uniform scale, the probability of one variable being extreme given that the other one is extreme.

Note that two variables can be dependent at normal levels but asymptotically independent in the extremes, as in the case for

a bivariate Gaussian distribution (Sibuya et al., 1960). To fine tune the rate of decay towards the asymptotically independent
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case (χ= 0), the residual tail dependence coefficient χ̄ contains additional information (Ledford and Tawn, 1996):

χ̄= lim
q→1

log(P(F1(X1)> q)P(F2(X2)> q))
logP(F1(X1)> q,F2(X2)> q)

− 1 ∈ [−1,1].120

χ̄ is equal to 1 for asymptotically dependent variables, while for asymptotically independent variables χ̄ indicates if X1 and

X2 are positively (χ̄ > 0) or negatively (χ̄ < 0) associated in their extremes. Thus, the pair of coefficients (χ,χ̄) summarizes

the tail dependence structure of X1 and X2.

Because both coefficients χ and χ̄ are defined as a limit value, a usual way to analyze the behaviour of a bivariate tail

dependence structure between two variables is to compute empirical estimates for varying threshold levels q and then visually125

inspect their behaviour as q→ 1. We estimate χ and χ̄ with the function taildep from the R package extRemes (Gilleland and

Katz, 2016).

We generally estimate χ at q = 0.95. To take into account that heavy precipitation events and extreme winds can be linked

through storms or foehn events across neighboring locations and with a lag of several days, we estimate χ using a local block

maxima approach. We thus first compute the daily precipitation and wind speed maxima for varying block sizes ranging from130

0.25◦ (approximately 20-30 km) to 1.75◦ (that is, maximum 3 grid points in any direction, or 100-200 km) and up to 5 days

(i.e., maximum 2 days before and after the day of interest).

We further assess whether estimates of χ are significantly different from 0. To this end, we bootstrap the data by randomly

shuffling the temporal order of one variable to break the dependence structure. The coefficient χ is then estimated as above.

Estimates of χ are considered significantly different from 0 if they are larger than 95% of the bootstrapped estimates.135

3.2 Measuring differences in bivariate extremal dependence structures

Classical tail coefficients like χ are informative summaries to assess the extremal dependence between two univariate random

variables, sayX1 andX2, but they cannot quantify the difference between extremal dependence between two bivariate random

vectors, say X(1) = (X(1)
1 ,X

(1)
2 ) and X(2) = (X(2)

1 ,X
(2)
2 ). For example, a χ(1) can be computed between heavy rainfall and

strong winds computed from one dataset, e.g. ERA5, and compared to a χ(2) for a second dataset, e.g. ERAI-WRF. But it140

would also be very convenient to have a single number to tell us if the extremal dependence between these two bivariate

random vectors are different, and if so, by how much. Recent work by Naveau et al. (2014) showed the well-known Kullback–

Leibler (KL) divergence used in signal processing can be tailored to the framework of extreme value theory. The approach has

been applied to cluster climate data according to their bivariate extremal bevaviour (Vignotto et al., submitted). However, to

our knowledge, multivariate extremal divergence measures have never been applied to the analysis of compound weather and145

climate events. By complementing tail coefficients, this new tool could shed new lights on the joint behavior of heavy rainfall

and strong winds across our different datasets.

The KL divergence is defined on marginals which are normalized to standard Pareto distributions. A risk function r : R2→ R

is used to describe the extreme region in each one of the bivariate distributions. The risk function can be chosen as the sum

r(x) = x1 +x2 or the minimum r(x) = min(x1,x2), x = (x1,x2). Hence, we consider as extreme points those for which150

the sum (or minimum) of the components exceeds a given high quantile q(j)u of r(X(j)) corresponding to an exceedance
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probability u ∈ (0,1), j = 1,2. Varying the threshold q(j)u alters the extremal region of interest. For each of the two bivariate

distributions, the set A(j) = {r(x)> q
(j)
u }, j = 1,2, is partitioned into a fixed number W of disjoint sets A(j)

1 , . . . ,A
(j)
W .

For two random samples X
(1)
1 , . . . ,X(1)

n , and X
(2)
1 , . . . ,X(2)

n , from the distributions X(1) and X(2), the empirical propor-

tions of data points belonging to set AW is computed as155

p̂(j)
w =

#
{
i : X

(j)
i ∈A

(j)
w

}

#
{
i : r

(
X

(j)
i

)
> q

(j)
u

} , w = 1, . . . ,W.

The difference between the extremal behaviours of the two distributions can then be measured as the KL divergence between

the two multinomial distributions defined through these proportions, i.e.,

d12 =D(X(1),X(2)) =
1
2

W∑

w=1

(
(p̂(1)

w − p̂(2)
w ) log(p̂(1)

w /p̂(2)
w )
)
. (1)

Note that this divergence is symmetric and since it is a non-parametric statistic it does not require additional model assumptions.160

Equation (1) contrasts differences among extremal dependence structures, both for asymptotically dependent and asymptoti-

cally independent data. The number of partitioning sets W is a free parameter. If it is chosen too high, many sets will be empty,

resulting in an undefined KL divergence. If it is too small, only a rough summary is computed but not really an estimate of tail

dependence. We chose W = 3 in this study. The statistic d12 follows a χ2(W − 1) distribution in the limit, which allows us to

estimate whether distances are significantly different from 0.165

The approach is illustrated in Figs. 2 and 3. Figure 2 shows daily precipitation sums and maximum wind speed at grid

point 9◦E, 46.75◦N on the original scale (a, d), and with margins normalized to exponential scale (b, e) and to standard Pareto

distributions (c, f) for ERAI-WRF (a-c) and CESM-WRF (d-f). The shown grid point reaches the highest χ at q = 0.95 in

the ERAI-WRF simulation. The colors in all subpanels and the dashed lines in Fig. 2c and f highlight the three disjoint sets

A
(j)
1 ,A

(j)
2 andA(j)

3 , respectively (see above). At the exponential scale moderate and large extremes can be seen well whereas at170

the Pareto scale only very extreme values can be identified easily visually. Figure 3 illustrates χ (a) and χ̄ (c) for the distributions

of the two simulations and the divergence based on Eq. (1) with “sum” (b) and “min” (d) as the risk function, including 95%

confidence intervals of the empirical estimates. The estimates of χ and χ̄ start to diverge somewhat for q > 0.8, suggesting

different tail behavior (uncertainty ranges are estimated based on the R function chiplot from the package evd (Stephenson,

2002)). This impression is confirmed by the estimates of the KL divergence: For most thresholds u > 0.5 and both choices of175

the risk function the KL divergence is outside of the 95%-quantile of the limiting χ2(W − 1) distribution of the statistic d12

under the null hypothesis of equal tail dependence structures. This means that we can conclude that the two distributions have

significantly different tail behaviour.

We investigate how well different simulations represent the bivariate tail behaviour of daily precipitation sums and wind

speed maxima in winter by comparing ERA5, CESM-WRF and CESM-WRF-fut against ERAI-WRF with the divergence as180

defined in Eq. (1) based the maxima over the spatio-temporal blocks that maximize tail dependence χ at q = 0.95. For the

computation of the KL divergence (Eq. (1)) we use u= 0.9 and “sum” as the risk function.
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4 Results

We first present a simple correlation analysis based on Spearman’s rank correlation coefficient. Daily precipitation sums and

maximum wind speed are generally strongly correlated in winter in most areas of the study domain except in the northwest185

of Italy (Fig. 4). All model simulations show a relatively consistent pattern, whereas ERA5 shows negative correlations at the

southern slopes of the Alps along the northwestern Italian borders (Fig. 4b). Most correlations are significant (α= 0.05).

When considering only the dependence in the tails based on χ and including a spatial and temporal neighborhood, the spatial

patterns look quite different (Fig. 5). The WRF simulations show a highly heterogeneous picture with strong local variations,

with generally strong dependence over most parts of the Alps and close to the Adriatic coast and weak dependence otherwise190

(Fig. 5a, c, d). Overall, ERAI-WRF shows slightly higher tail dependence compared to the WRF simulations driven by CESM.

In contrast to the WRF simulations, in ERA5 tail dependence varies rather smoothly in space, with higher values in northeast

Italy and along the eastern border of France (Fig. 5b).

The block sizes that attain the maximum tail dependence χ for precipitation and wind extremes for each pixel are shown in

Fig. 6. On average for 75% of the pixels, the maximum is attained with no temporal lag. In contrast, there seems to be a shift195

in space, as maxima tend to co-occur in neighboring grid points: block sizes with larger than minimal (0.25◦) spatial extent

occur on average in 60% of all locations (lighter colors in Fig. 6). This means that extremes in daily precipitation sums and

wind extremes tend to occur on the same day but potentially not exactly at the same location but with some distance apart. In

particular south of the Alps but also in some regions north of the Alps, this distance is 1.75°, or about 100-200 km (very light

colors in Fig. 6). The strongest agreement of the dependence patterns exist between CESM-WRF and CESM-WRF-fut, which200

agree for half of the locations in the maximizing block size. In contrast, the agreement is 29% between ERAI-WRF and ERA5,

and 39% between ERAI-WRF and CESM-WRF. Note that grid points at the boundaries cannot attain maxima with block sizes

larger than one grid point as no data values are available outside the study domain.

The tails between winter daily precipitation sums and wind speed maxima show a significantly different dependence structure

between ERAI-WRF and CESM-WRF in 40% of all grid points, mostly in Switzerland and in the north of the study domain205

but also in many regions in northern Italy (Fig. 7a). The percentage of grid points with significantly different tail behaviour

is slightly higher for the comparison of ERAI-WRF and ERA5 (42%) though in this case most of the differences occur in

grid points located along a wide diagonal band from south west to north east through the entire study domain (Fig. 7b).

Interestingly, the comparison of ERAI-WRF with CESM-WRF-fut results in only 28% pixels with significantly different tail

behaviour (Fig. 7c). Thus, CESM-WRF-fut agrees better with ERAI-WRF with respect to the tail behaviour than CESM-WRF210

and ERAI-WRF. Finally, only 15% of pixels show significantly different tail behaviour when comparing CESM-WRF and

CESM-WRF-fut (Fig. 7d), indicating the pair with the largest number of grid points where no significant difference in the

tail behavior could be found. The numbers of grid points with significantly different tail behaviour depends somewhat on the

threshold u and generally decrease with increasing extremeness (that is, increasing u) but the differences between the different

pairwise comparisons remains similar (Table 1).215
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5 Discussion

We have introduced a new metric for comparing tail dependence structures between wind and precipitation extremes in reanal-

ysis data and weather model simulations. In our WRF simulations, the type of boundary conditions, either ERAI or CESM,

appears to have a stronger effect on the coupling between high wind and heavy rainfall than the change of external forcing

(present-day and future) in CESM (Fig. 7). This suggests that the studied dependence structures between the tails of precipi-220

tation sums and wind speed maxima in winter are a rather robust feature of the combination of models (boundary conditions

plus high-resolution weather model) and thus also somewhat determined by the boundary conditions. In consequence this also

means that here we are probably detecting rather stable dynamical features that are largely independent of strong external

forcing such as (much) higher mean temperatures. Because the model setting determines dependence structure, sampling un-

certainties in this dependence, for instance to robustly assess risks under future climate conditions, would require a range of225

different climate and weather model combinations.

The employed block maxima approach (Fig. 5) has the effect that precipitation and wind extremes are considered together

even if they might occur some distance apart in either time or space. This is to ensure that events are considered together

that likely emerge from the same atmospheric processes (e.g. Foehn). At the same time, the block maxima approach can help

diagnose why datasets differ in their tail dependence structure of precipitation and wind extremes, for instance if the spatio-230

temporal blocks for which extremes are attained differ strongly.

Regarding the optimal spatial and temporal lags between wind and precipitation extremes there is generally a good agreement

that along the southern slopes of the Alps the dependence is maximized for precipitation and wind extremes occurring on the

same day and up to 1.75° apart (lightest blue in Fig. 6), which could be related to Foehn events that lead to heavy precipitation

north of the mountain range and extreme winds on the southern slopes or vice versa. Indeed, heavy precipitation events on the235

Alpine southside are often related to high moisture transport ahead of cold fronts that is associated with moderate winds that

are not as strong as potential Foehn gusts on the Alpine north side (Panziera and Germann, 2010).

Most heavy precipitation events in the investigation domain in winter are associated with extratropical cyclones. Within

extratropical cyclones, wind speed maxima and precipitation maxima are often linked to fronts and conveyor belts (Parton

et al., 2010; Catto and Pfahl, 2013; Pfahl et al., 2014; Pantillon et al., 2020) and this may results in co-located extremes.240

However, important modulations of both extreme wind and precipitation patterns by the local complex orography are to be

expected (Whiteman, 2000; Barry, 2008) and such local Foehn effects, channelling effects, or flow blocking and many more

might be captured by the high resolution WRF simulations but not in ERA5.

Overall, ERA5 shows quite a different behavior in Spearman’s rank correlation (Fig. 4) and simple tail dependence χ (Fig. 5)

compared to the high-resolution weather model simulations. Spatial patterns are much smoother, probably related to the much245

coarser spatial resolution (30 km compared to the original 2 km in the WRF simulations). Furthermore, wind speeds over high

mountains are unrealistic, as they decrease with height rather than increase (Fig. 1). These limitations render ERA5 unsuitable

as a benchmark for the tail dependence between precipitation and wind extremes in the Alpine area with its complex orography.

Presently, homogenized gridded wind observations of good quality are not available for this region. Therefore, driving a well-
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calibrated high-resolution weather model with observation-based boundary conditions is currently the best benchmark to study250

compound wind and precipitation extremes.

Evaluating how well models represent tail dependencies may help selecting those models that are fit for purpose (Maraun

et al., 2017) regarding the analysis of compound events (Zscheischler et al., 2020). In particular, when the interest lies in the

simulation of impacts, the approach may help decide when multivariate bias adjustment approaches would need to be employed

(François et al., 2020), as univariate bias adjustment might increase biases in impacts that depend on multiple correlated drivers255

(Zscheischler et al., 2019).

6 Conclusions

Evaluating the ability of climate models to represent the likelihood of compound climate extremes is important for well-

informed climate risk assessments. In this study we investigated differences in the tail behaviour of precipitation and wind

extremes in winter between different weather model simulations and a reanalysis dataset for a region in central Europe. Em-260

ploying a new metric to measure differences in tail behaviour of bivarate distributions, we found that simulations of the same

model pair with different external forcing conditions (climate change conditions) differ less than simulations for present-day

conditions with different boundary data. Our results further suggest that reanalysis data are not suitable as a benchmark for

the analysis of compound precipitation and wind extremes over complex terrain such as the Alps. Overall, differences between

model simulations (different boundary conditions and weather/climate models) can be substantial. Our results suggest the cli-265

mate impact modelling needs to take uncertainties related to the simulation of compound extremes into account to provide

robust risk assessments for today and the future.
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The output from the WRF simulations are very large data files and are available from Christoph Raible (christoph.raible@climate.unibe.ch).

Author contributions. J.Z. and P.N. conceived the idea and study design. P.N. and S.E. developed the code for the new metric. C.C.R.270

provided the model simulations. O.M. helped with the interpretation of the results. J.Z. performed all analysis, created all figures and wrote

the first draft. All authors contributed substantially to the writing and revising of the manuscript.

Competing interests. The authors declare that they have no competing interests.

Acknowledgements. This research was supported by a Short-Term Scientific Mission from the European COST Action DAMOCLES

(CA17109). J.Z. acknowledges financial support from the Swiss National Science Foundation (Ambizione grant 179876). C.C.R is supported275

9

https://doi.org/10.5194/esd-2020-31
Preprint. Discussion started: 4 June 2020
c© Author(s) 2020. CC BY 4.0 License.



by the Swiss National Science foundation (grant: pleistoCEP – no. 200020_172745). The CESM and WRF simulations were performed on

the supercomputing architecture of the Swiss National Supercomputing Centre (CSCS, Lugano, Switzerland. O.M. is supported by the Swiss

National Science Foundation (grant 178751).

10

https://doi.org/10.5194/esd-2020-31
Preprint. Discussion started: 4 June 2020
c© Author(s) 2020. CC BY 4.0 License.



References

Ban, N., Schmidli, J., and Schaer, C.: Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations,280

Journal of Geophysical Research-Atmospheres, 119, 889–7907, https://doi.org/10.1002/2014JD021478, 2014.

Barry, R. G.: Mountain weather and climate, Cambridge University Press, Cambridge, 3rd edn., 2008.

Bevacqua, E., Maraun, D., Vousdoukas, M. I., Voukouvalas, E., Vrac, M., Mentaschi, L., and Widmann, M.: Higher probability of com-

pound flooding from precipitation and storm surge in Europe under anthropogenic climate change, Science Advances, 5, eaaw5531,

https://doi.org/doi/10.1126/sciadv.aaw5531, 2019.285

Bracegirdle, T. J., Shuckburgh, E., Sallee, J.-B., Wang, Z., Meijers, A. J. S., Bruneau, N., Phillips, T., and Wilcox, L. J.: Assessment of surface

winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: historical bias, forcing response, and

state dependence, Journal of Geophysical Research-Atmospheres, 118, 547–562, https://doi.org/10.1002/jgrd.50153, 2013.

Catto, J. L. and Pfahl, S.: The importance of fronts for extreme precipitation, Journal of Geophysical Research-Atmospheres, 118, 10 791–

10 801, https://doi.org/10.1002/jgrd.50852, 2013.290

Champagne, O., Leduc, M., Coulibaly, P., and Arain, M. A.: Winter hydrometeorological extreme events modulated by large-scale atmo-

spheric circulation in southern Ontario, Earth System Dynamics, 11, 301–318, https://doi.org/10.5194/esd-11-301-2020, 2020.

Copernicus Climate Change Service (C3S): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Tech. rep.,

Copernicus Climate Change Service Climate Data Store (CDS), 2017.

Couasnon, A., Eilander, D., Muis, S., Veldkamp, T. I. E., Haigh, I. D., Wahl, T., Winsemius, H. C., and Ward, P. J.: Measuring compound flood295

potential from river discharge and storm surge extremes at the global scale, Natural Hazards and Earth System Sciences, 20, 489–504,

https://doi.org/10.5194/nhess-20-489-2020, 2020.

De Luca, P., Messori, G., Pons, F. M. E., and Faranda, D.: Dynamical systems theory sheds new light on compound climate extremes in

Europe and Eastern North America, Quarterly Journal of the Royal Meteorological Society, https://doi.org/10.1002/qj.3757, 2020.

Dee, D. P., Uppala, S. M., Simmons, a. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. a., Balsamo, G., Bauer,300

P., Bechtold, P., Beljaars, a. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, a. J., Haim-

berger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, a. P., Monge-Sanz,

B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis:

configuration and performance of the data assimilation system, Quarterly Journal of the Royal Meteorological Society, 137, 553–597,

https://doi.org/10.1002/qj.828, 2011.305

Deser, C., Lehner, F., Rodgers, K. B., Ault, T., Delworth, T. L., DiNezio, P. N., Fiore, A., Frankignoul, C., Fyfe, J. C., Horton, D. E.,

Kay, J. E., Knutti, R., Lovenduski, N. S., Marotzke, J., McKinnon, K. A., Minobe, S., Randerson, J., Screen, J. A., Simpson, I. R., and

Ting, M.: Insights from Earth system model initial-condition large ensembles and future prospects, Nature Climate Change, 10, 1–10,

https://doi.org/10.1038/s41558-020-0731-2, 2020.

Fink, A. H., Brücher, T., Ermert, V., Krüger, A., and Pinto, J. G.: The European storm Kyrill in January 2007: synoptic evolution, mete-310

orological impacts and some considerations with respect to climate change, Natural Hazards and Earth System Sciences, 9, 405–423,

https://doi.org/10.5194/nhess-9-405-2009, 2009.

Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler,

P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., and Rummukainen, M.: Evaluation of Climate Models, in: Climate Change 2013:

The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate315

11

https://doi.org/10.5194/esd-2020-31
Preprint. Discussion started: 4 June 2020
c© Author(s) 2020. CC BY 4.0 License.



Change, edited by Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley,

P. M., pp. 741–866, https://doi.org/10.1017/CBO9781107415324.020, 2013.

François, B., Vrac, M., Cannon, A. J., Robin, Y., and Allard, D.: Multivariate bias corrections of climate simulations: Which benefits for

which losses?, Earth System Dynamics Discussions, 2020, 1–41, https://doi.org/10.5194/esd-2020-10, 2020.

Gilleland, E. and Katz, R. W.: extRemes 2.0: An Extreme Value Analysis Package in R, Journal of Statistical Software, 72, 1–39,320

https://doi.org/10.18637/jss.v072.i08, 2016.

Gómez-Navarro, J. J., Raible, C. C., Bozhinova, D., Martius, O., García Valero, J. A., and Montávez, J. P.: A new region-aware bias-

correction method for simulated precipitation in areas of complex orography, Geoscientific Model Development, 11, 2231–2247,

https://doi.org/10.5194/gmd-11-2231-2018, 2018.

Gómez-Navarro, J. J., Raible, C. C., and Dierer, S.: Sensitivity of the WRF model to PBL parametrisations and nesting techniques: evaluation325

of wind storms over complex terrain, Geoscientific Model Development, 8, 3349–3363, https://doi.org/10.5194/gmd-8-3349-2015, 2015.

Graf, M., Scherrer, S. C., Schwierz, C., Begert, M., Martius, O., Raible, C. C., and Brönnimann, S.: Near-surface mean wind in

Switzerland: Climatology, climate model evaluation and future scenarios, International Journal of Climatology, 39, 4798–4810,

https://doi.org/10.1002/joc.6108, 2019.

Hendry, A., Haigh, I. D., Nicholls, R. J., Winter, H., Neal, R., Wahl, T., Joly-Laugel, A., and Darby, S. E.: Assessing the charac-330

teristics and drivers of compound flooding events around the UK coast, Hydrology and Earth System Sciences, 23, 3117–3139,

https://doi.org/10.5194/hess-23-3117-2019, 2019.

Hong, S. and Lim, J.: The WRF single-moment 6-class micro-physics scheme (WSM6), Journal of Korean Meteorology Society, 42, 129–

151, 2020.

Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., Lamarque, J. F., Large, W. G., Lawrence, D., Lindsay, K.,335

Lipscomb, W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., Collins,

W. D., Hack, J. J., Kiehl, J., and Marshall, S.: The Community Earth System Model A Framework for Collaborative Research, Bulletin of

the American Meteorological Society, 94, 1339–1360, https://doi.org/10.1175/BAMS-D-12-00121.1, 2013.

Jimenez, P. A. and Dudhia, J.: Improving the Representation of Resolved and Unresolved Topographic Effects on Surface Wind in the WRF

Model, Journal of Applied Meteorology and Climatology, 51, 300–316, https://doi.org/10.1175/JAMC-D-11-084.1, 2012.340

Jones, P. D., Harpham, C., Troccoli, A., Gschwind, B., Ranchin, T., Wald, L., Goodess, C. M., and Dorling, S.: Using ERA-Interim reanalysis

for creating datasets of energy-relevant climate variables, Earth System Science Data, 9, 471–495, https://doi.org/10.5194/essd-9-471-

2017, 2017.

Ledford, A. W. and Tawn, J. A.: Statistics for near independence in multivariate extreme values, Biometrika, 83, 169–187, 1996.

Ledford, A. W. and Tawn, J. A.: Modelling dependence within joint tail regions, J. R. Stat. Soc. Ser. B Stat. Methodol., 59, 475–499, 1997.345

Lehner, F., Joos, F., Raible, C. C., Mignot, J., Born, A., Keller, K. M., and Stocker, T. F.: Climate and carbon cycle dynamics in a CESM

simulation from 850 to 2100 CE, Earth System Dynamics, 6, 411–434, https://doi.org/10.5194/esd-6-411-2015, 2015.

Liberato, M. L.: The 19 January 2013 windstorm over the North Atlantic: large-scale dynamics and impacts on Iberia, Weather and Climate

Extremes, 5-6, 16 – 28, https://doi.org/https://doi.org/10.1016/j.wace.2014.06.002, 2014.

Lin, N., Emanuel, K. A., Smith, J. A., and Vanmarcke, E.: Risk assessment of hurricane storm surge for New York City, Journal of Geophys-350

ical Research: Atmospheres, 115, D18 121, https://doi.org/10.1029/2009JD013630, 2010.

12

https://doi.org/10.5194/esd-2020-31
Preprint. Discussion started: 4 June 2020
c© Author(s) 2020. CC BY 4.0 License.



Manning, C., Widmann, M., Bevacqua, E., Loon, A. F. V., Maraun, D., and Vrac, M.: Increased probability of compound long-duration

dry and hot events in Europe during summer (1950–2013), Environmental Research Letters, 14, 094 006, https://doi.org/10.1088/1748-

9326/ab23bf, 2019.

Maraun, D., Shepherd, T. G., Widmann, M., Zappa, G., Walton, D., Gutierrez, J. M., Hagemann, S., Richter, I., Soares, P. M. M., Hall,355

A., and Mearns, L. O.: Towards process-informed bias correction of climate change simulations, Nature Clim. Change, 7, 764–773,

https://doi.org/10.1038/nclimate3418, 2017.

Martius, O., Pfahl, S., and Chevalier, C.: A global quantification of compound precipitation and wind extremes, Geophysical Research

Letters, 43, 7709–7717, 2016.

Mazdiyasni, O. and AghaKouchak, A.: Substantial increase in concurrent droughts and heatwaves in the United States, Proceedings of the360

National Academy of Sciences, 112, 11 484–11 489, https://doi.org/10.1073/pnas.1422945112, 2015.

Messmer, M., Gómez-Navarro, J. J., and Raible, C. C.: Sensitivity experiments on the response of Vb cyclones to sea surface temperature

and soil moisture changes, Earth System Dynamics, 8, 477–493, https://doi.org/10.5194/esd-8-477-2017, 2017.

Messmer, M., Gómez-Navarro, J. J., and Raible, C. C.: The Impact of Climate Change on the Climatology of Vb-Cyclones, Tellus, 14, in

press, 2020.365

Mitchell, T. D. and Jones, P. D.: An improved method of constructing a database of monthly climate observations and associated high-

resolution grids, International Journal of Climatology, 25, 693–712, https://doi.org/10.1002/joc.1181, 2005.

Musselman, K., Lehner, F., Ikeda, K., Clark, M., Prein, A., Liu, C., Barlage, M., and Rasmussen, R.: Projected increases and shifts in

rain-on-snow flood risk over western North America, Nature Climate Change, 8, https://doi.org/10.1038/s41558-018-0236-4, 2018.

Naveau, P., Guillou, A., and Rietsch, T.: A non-parametric entropy-based approach to detect changes in climate extremes, Journal of the370

Royal Statistical Society: Series B (Statistical Methodology), 76, 861–884, 2014.

Pantillon, F., Adler, B., Corsmeier, U., Knippertz, P., Wieser, A., and Hansen, A.: Formation of Wind Gusts in an Extratropical Cyclone in

Light of Doppler Lidar Observations and Large-Eddy Simulations, Monthly Weather Review, 148, 353–375, https://doi.org/10.1175/Mwr-

D-19-0241.1, 2020.

Panziera, L. and Germann, U.: The relation between airflow and orographic precipitation on the southern side of the Alps as revealed by375

weather radar, Quarterly Journal of the Royal Meteorological Society, 136, 222–238, https://doi.org/10.1002/qj.544, 2010.

Parton, G., Dore, A., and Vaughan, G.: A climatology of mid-tropospheric mesoscale strong wind events as observed by the MST radar,

Aberystwyth, Meteorological Applications, 17, 340–354, https://doi.org/10.1002/met.203, 2010.

Pfahl, S., Madonna, E., Boettcher, M., Joos, H., and Wernli, H.: Warm Conveyor Belts in the ERA-Interim Dataset (1979-2010). Part II:

Moisture Origin and Relevance for Precipitation, Journal of Climate, 27, 27–40, https://doi.org/Doi 10.1175/Jcli-D-13-00223.1, 2014.380

Poon, S.-H., Rockinger, M., and Tawn, J.: Extreme value dependence in financial markets: Diagnostics, models, and financial implications,

The Review of Financial Studies, 17, 581–610, 2003.

Poschlod, B., Zscheischler, J., Sillmann, J., Wood, R. R., and Ludwig, R.: Climate change effects on hydrometeorological compound events

over southern Norway, Weather and Climate Extremes, p. 100253, https://doi.org/https://doi.org/10.1016/j.wace.2020.100253, 2020.

Raible, C. C., Messmer, M., Lehner, F., Stocker, T. F., and Blender, R.: Extratropical cyclone statistics during the last millennium and the385

21st century, Climate of the Past, 14, 1499–1514, https://doi.org/10.5194/cp-14-1499-2018, 2018.

Raveh-Rubin, S. and Wernli, H.: Large-scale wind and precipitation extremes in the Mediterranean: A climatological analysis for 1979-2012,

Quarterly Journal of the Royal Meteorological Society, 141, 2404–2417, https://doi.org/10.1002/qj.2531, 2015.

Sibuya, M. et al.: Bivariate extreme statistics, Annals of the Institute of Statistical Mathematics, 11, 195–210, 1960.

13

https://doi.org/10.5194/esd-2020-31
Preprint. Discussion started: 4 June 2020
c© Author(s) 2020. CC BY 4.0 License.



Sippel, S., Zscheischler, J., Mahecha, M. D., Orth, R., Reichstein, M., Vogel, M., and Seneviratne, S. I.: Refining multi-model pro-390

jections of temperature extremes by evaluation against land–atmosphere coupling diagnostics, Earth System Dynamics, 8, 387–403,

https://doi.org/10.5194/esd-8-387-2017, 2017.

Sippel, S., Reichstein, M., Ma, X., Mahecha, M. D., Lange, H., Flach, M., and Frank, D.: Drought, Heat, and the Carbon Cycle: a Review,

Current Climate Change Reports, 4, 266–286, https://doi.org/10.1007/s40641-018-0103-4, 2018.

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., and Powers, J. G.: A description of the advanced research395

WRF version 3, Tech. rep., TN-475+STR, National Center for Atmospheric Research, 2008.

Stephenson, A. G.: evd: Extreme Value Distributions, R News, 2, 0, https://CRAN.R-project.org/doc/Rnews/, 2002.

Stucki, P., Dierer, S., Welker, C., Gómez-Navarro, J. J., Raible, C. C., Martius, O., and Brönnimann, S.: Evaluation of downscaled wind

speeds and parameterised gusts for recent and historical windstorms in Switzerland, Tellus A: Dynamic Meteorology and Oceanography,

68, 31 820, https://doi.org/10.3402/tellusa.v68.31820, 2016.400

Sutanto, S. J., Vitolo, C., Napoli, C. D., D’Andrea, M., and Lanen, H. A. V.: Heatwaves, droughts, and fires: Ex-

ploring compound and cascading dry hazards at the pan-European scale, Environment International, 134, 105 276,

https://doi.org/https://doi.org/10.1016/j.envint.2019.105276, 2020.

Telesca, L., Guignard, F., Laib, M., and Kanevski, M.: Analysis of temporal properties of extremes of wind measurements from 132 stations

over Switzerland, Renewable Energy, 145, 1091 – 1103, https://doi.org/https://doi.org/10.1016/j.renene.2019.06.089, 2020.405

Vignotto, E., Engelke, S., and Zscheischler, J.: Clustering bivariate dependences in the extremes of climate variables, Journal of Climate,

submitted.

Wahl, T., Jain, S., Bender, J., Meyers, S. D., and Luther, M. E.: Increasing risk of compound flooding from storm surge and rainfall for major

US cities, Nature Climate Change, 5, 1–6, https://doi.org/10.1038/nclimate2736, 2015.

Wang, J., Chen, Y., Tett, S. F., Yan, Z., Zhai, P., Feng, J., and Xia, J.: Anthropogenically-driven increases in the risks of summertime410

compound hot extremes, Nature Communications, 11, https://doi.org/10.1038/s41467-019-14233-8, 2020.

Ward, P. J., Couasnon, A., Eilander, D., Haigh, I. D., Hendry, A., Muis, S., Veldkamp, T. I., Winsemius, H. C., and Wahl, T.: Dependence

between high sea-level and high river discharge increases flood hazard in global deltas and estuaries, Environmental Research Letters, 13,

084 012, 2018.

Whiteman, C. D.: Mountain meteorology fundamentals and applications, Oxford University Press, New York, 2000.415

Zheng, F., Westra, S., and Sisson, S. A.: Quantifying the dependence between extreme rainfall and storm surge in the coastal zone, Journal

of hydrology, 505, 172–187, 2013.

Zscheischler, J. and Fischer, E.: The record-breaking compound hot and dry 2018 growing season in Germany, Weather and Climate Ex-

tremes, in review.

Zscheischler, J. and Seneviratne, S. I.: Dependence of drivers affects risks associated with compound events, Science Advances, 3, e1700 263,420

2017.

Zscheischler, J., Michalak, A. M., Schwalm, C., Mahecha, M. D., Huntzinger, D. N., Reichstein, M., Berthier, G., Ciais, P., Cook, R. B.,

El-Masri, B., Huang, M., Ito, A., Jain, A., King, A., Lei, H., Lu, C., Mao, J., Peng, S., Poulter, B., Ricciuto, D., Shi, X., Tao, B.,

Tian, H., Viovy, N., Wang, W., Wei, Y., Yang, J., and Zeng, N.: Impact of large-scale climate extremes on biospheric carbon fluxes: An

intercomparison based on MsTMIP data, Global Biogeochemical Cycles, 28, 585–600, https://doi.org/10.1002/2014GB004826, 2014.425

Zscheischler, J., Westra, S., Hurk, B. J., Seneviratne, S. I., Ward, P. J., Pitman, A., AghaKouchak, A., Bresch, D. N., Leonard, M., Wahl, T.,

and Zhang, X.: Future climate risk from compound events, Nature Climate Change, 8, 469–477, 2018.

14

https://doi.org/10.5194/esd-2020-31
Preprint. Discussion started: 4 June 2020
c© Author(s) 2020. CC BY 4.0 License.



Zscheischler, J., Fischer, E. M., and Lange, S.: The effect of univariate bias adjustment on multivariate hazard estimates, Earth System

Dynamics, 10, 31–43, 2019.

Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton, R. M., van den Hurk, B., AghaKouchak, A., Jézéquel, A.,430

Mahecha, M. D., Maraun, D., Ramos, A. M., Ridder, N., Thiery, W., and Vignotto, E.: A typology of compound weather and climate

events, Nature Reviews Earth and Environment, https://doi.org/10.1038/ s43017-020-0060-z, 2020.

15

https://doi.org/10.5194/esd-2020-31
Preprint. Discussion started: 4 June 2020
c© Author(s) 2020. CC BY 4.0 License.



●●● ●● ●
●●● ● ● ●●●●●●●●●●●●●●●●●●●●●●

●●●●● ●
●●● ● ●●●●●●● ● ●●●●●●●●●●●●●●●●●●●

●●●●● ●●●●● ●●●●●●
● ●

● ●●●●●●●●●●●●●●●●●

● ●●● ● ●
●●●●●

●● ● ●●● ● ● ● ●●●●●●●●●●●●●●●●

● ● ● ● ●●
●●● ●●

● ● ● ●●● ● ● ● ● ●●●●●● ●●●●●●●●●

● ● ●
●●●● ●

● ● ● ●● ●●●● ● ●●● ●●●●● ●●●●●●●●●●

● ● ●
●

●● ● ● ● ● ●
●●●●● ● ●●● ●●●● ● ● ●●●●●●●●●●

●
●●

● ● ● ● ● ●
●●

●●●● ● ● ●● ● ●●●● ● ●●●●●●● ● ●●●
●

●● ● ● ● ● ● ●
●●●●●● ● ● ● ● ●●●●●●●●●●

●●●
● ●●●

●
● ● ● ● ●●●●●●●

●●●● ●●●●●●●●●●●
●

●

●

●
●

● ● ●

● ● ● ● ●
●●

●
●●●●

●●●●●●●●●●●●●
●

●
●
●
●●●

●
● ●

● ● ● ● ●●●●
●●

●●
●●●●●●●●●●●●●

●

●
●
●●●
●

●
● ●

● ● ● ●●●●●●●
●●● ● ●●●●●●●●

●●●
●
●

●
●●●● ●●

●
● ● ●●●●●●●

●●● ● ●●●●●●●●●
●●

●

●
●
●●●
●●●

●
●

● ● ●
●●●●

●
●●

●

● ●●
●●●●●●●●●

●
●

●

●●●
●●●

●●
● ● ●

●●●●
●

●

●●
●

●

●
●

● ● ●●●
●●●●●

●

●
●●●
●●

●●
● ● ●

●●●
●

●

●

●●
●

●
●
● ●

●
●●●

●●●●●
●

●

●●
●●●

0 500 1000 1500 2000 2500 3000

0
5

10
15

ERA5

Altitude [m]

M
ea

n 
w

in
d 

sp
ee

d 
[m

/s
]

a)

●

●●
● ●

●
●

●

●

●
● ●

●

●

●●
●●●

●
●
●
●
●

●

●
●●
●

●
●

●●

●

●
●

●
●

●
●

●●

●

●
●●

●

●

●●

●●
●
●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●●●●
●●●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

● ●●
●
●

●

● ●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
● ●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●
●●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●
●●

● ●●

●

●
●

●

●●●

●●
●●
●●

●
●

● ● ●

●●

●

●

●

●

●

●●●●
●

●
●
●

●

●●●
●●

●

●

●
●
●●

●
●
●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●●
●

●

●●●●●●
●●●●
●

●

●
●●●●●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●●

●
●●●

●
●●●●●
●

●
●

●
●●
●●

●
●

●

●
●

●●

●●

●●
●

●●
●

●

●●
●●

●●●●
●●●
●

●
●●
●●
●
●●

●
●

●

●

●

●

●
●● ●●●

●

●
●

●

●

●

●●

●
●

●
●●●

●

●●
●●
●●●

●
●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●
●

●
●

●
●●●
●●●

●

●

●
●●

●

●

●
●

●

●

●
●
●
●●●

●

●

●

●

●

●

●
●

●

●●

●
●●●●●

0 500 1000 1500 2000 2500 3000

0
5

10
15

WRF

Altitude [m]

M
ea

n 
w

in
d 

sp
ee

d 
[m

/s
]

b)

Figure 1. Relationship between mean winter wind speed against altitude for ERA5 (a) and the the WRF model (ERAI-WRF simulation) (b).
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f)

Figure 2. Scatterplots of daily precipitation and wind speed in November-March (1980-1999) for the location with the highest tail dependence

χ (q = 0.95) in the ERAI-WRF simulations (a-c). CESM-WRF simulations for the same location are shown in (d-f). Shown are the original

values (a and d), after transformation into exponential marginals (b and e) and after transformation into Pareto marginals (c and f). The colors

highlight the three separating sets W to compute the KL divergence, see Eq. (1), for a high threshold (see main text). In c) and f), the three

sets are separated by dashed lines.
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Figure 3. Illustration of the distance metrics between bivariate tails for the location with highest estimated tail dependence χ at q = 0.95

in ERAI-WRF. Left: Tail dependence parameters χ (a) and χ̄ (c) for daily precipitation sums and daily maximum wind speed for different

quantile-based thresholds q. Shading highlights the 95% confidence intervals. Grey: ERAI-WRF. Red: CESM-WRF. Right: Two different

Kullback–Leibler (KL) divergences (eq. (1)) for the tails of the bivariate precipitation-wind speed distribution between ERAI-WRF and

CESM-WRF (solid lines). Dashed lines highlight the 95% confidence interval of the null hypothesis assuming an equal dependence structure.

b) KL divergence based on the minimum (i.e., min(X1,X2)> u). d) KL divergence based on the sum (i.e., X1 +X2 > u).
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Figure 4. Spearman’s rank correlation between daily precipitation sums and maximum wind speed in the extended winter (November-

March). a) ERAI-WRF, b) ERA5, c) CESM-WRF, d) CESM-WRF-fut. Non-significant correlations (α= 0.05) are marked with a cross.
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Figure 5. Tail dependence (χ with q = 0.95) between daily precipitation sums and maximum wind speed in the extended winter (November-

March). Tail dependence was computed considering block maxima over a maximum range 5 days temporally and 1.75 degrees spatially. a)

ERAI-WRF, b) ERA5, c) CESM-WRF, d) CESM-WRF-fut. Non-significant values based on bootstraps with the same maximum block size

(α= 0.05) are marked with a cross.
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Figure 6. Blocks for which the maximum tail dependence (χ with q = 0.95) between daily precipitation sums and maximum wind speed in

the extended winter (November-March) is attained (Figure 5). Block sizes range from 0.25°, 1 day to 1.75°, 5 days. Blue, green and orange

refer to time lags of 1, 3 and 5 days respectively. Darker shading illustrates higher spatial proximity. The color bars next to the maps show

the number of grid points of that color in the corresponding map. a) ERAI-WRF, b) ERA5, c) CESM-WRF, d) CESM-WRF-fut. Grid points

with non-significant tail dependence are marked with a cross (see Figure 5).
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Figure 7. Locations for which the dependence between the tails of daily precipitation sums and wind speed maxima is significantly different

based on the KL divergence, Eq. (1) with u= 0.9 and K = 3 (dark grey, with α= 0.05). Dependence is assessed for the blocks that attain

maximum tail dependence χ (at q = 0.95) (see Figure 5). Shown are comparisons between a) ERAI-WRF and CESM-WRF, b) ERAI-WRF

and ERA5, c) CESM-WRF and CESM-WRF-fut, and d) ERAI-WRF and CESM-WRF-fut.
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Table 1. Sensitivity analysis of KL divergence (eq. (1)). Reported is the fraction of grid points with significantly different (α= 0.05)

precipitation-wind speed dependence structure between two datasets for different thresholds u (with K = 3). The case u= 0.90 is shown in

Figure 7.

u= 0.80 u= 0.85 u= 0.90 u= 0.95

ERAI-WRF vs CESM-WRF 0.40 0.43 0.40 0.32

ERAI-WRF vs ERA5 0.53 0.47 0.42 0.31

ERAI-WRF vs CESM-WRF-fut 0.34 0.31 0.28 0.16

CESM-WRF vs CESM-WRF-fut 0.22 0.19 0.15 0.10
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